"Designing and Building a heat pipe demonstration unit for a mechanical engineering laboratory class at NAU"

Senior Capstone Design-ME476C Background Presentation

Kaled Aleweehan Abdullah Almutairi Waleed Almutairi Abdullah Ben Gheyam Omar Alotaibi

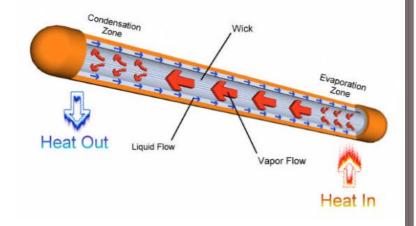


Figure [1]: Heat Pipe

Instructor: Dr. David Trevas 06/28/2018

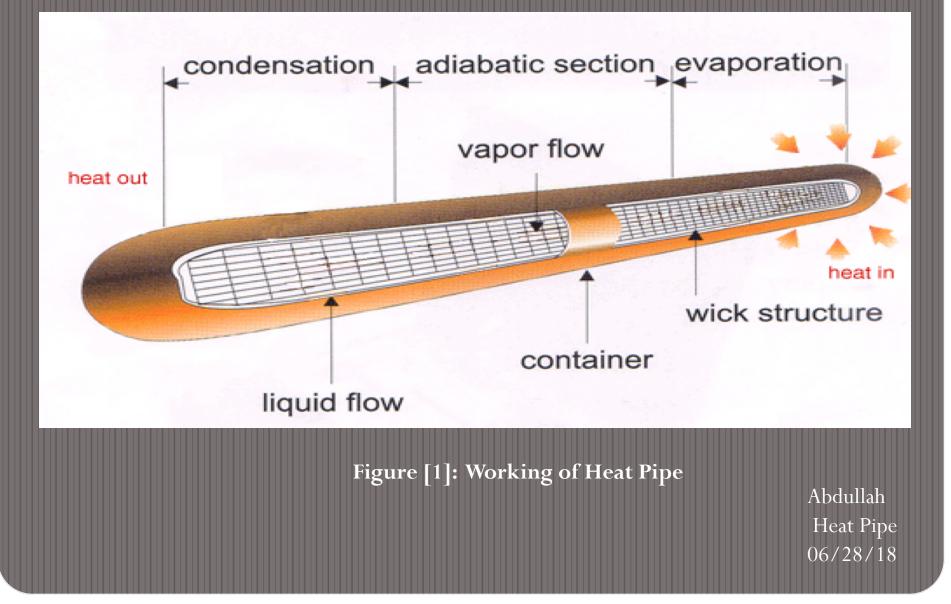
Project Description Background & Benchmarking **Existing Designs Customer & Engineering** Requirements Schedule & Budget

> Waleed Heat Pipe 06/28/18

Project Description:

- What is the project about?
- Our sponsor?
- Our stakeholders?
- Why is it important?

Waleed Heat Pipe 06/28/18


Background & Benchmarking:

Definition of a heat pipe.

• Where it used?

Waleed Heat Pipe 06/28/18

How a Heat Pipe Works

Heat applications

• Heat pipe heat exchanger enhancement

• Both cooling and reheating energy

• Chemical reactions

Abdullah Heat Pipe 06/28/18

Different Types of Heat Pipes

- Vapor chamber or flat heat pipes
- Variable Conductance Heat Pipes (VCHPs)
- Diode Heat Pipes
- Thermosyphons
- Loop heat pipe

Abdullah Heat Pipe 06/28/18

EXISTING DESIGNS

Existing Design #1: uses both a local and remote heat sink

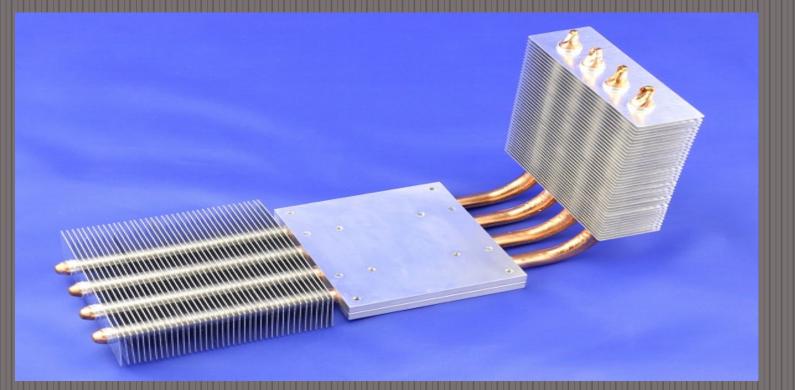


Figure [2]: local and remote heat sink

Omar Heat Pipe 06/28/18

EXISTING DESIGNS

Existing Design #2: Grooved Mounted Block type:

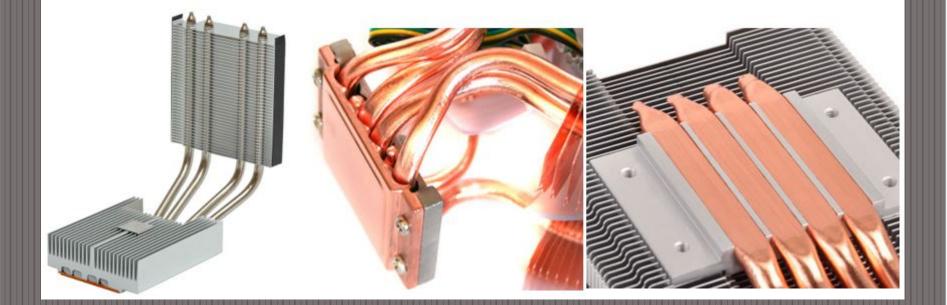


Figure [3]: Grooved Mounted Block type

Omar Heat Pipe 06/28/18

EXISTING DESIGNS

Existing Design #3: Direct Contact type Heat Pipe:

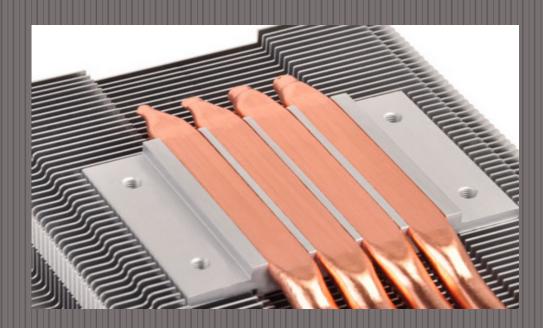


Figure [4]: Direct Contact type Heat Pipe

Omar Heat Pipe 06/28/18

Customer Requirements:

Table 1: Customer Requirements

Customer Requirement	Description	Weight
Durability	How long it is withstanding	0.16
Reliability	How accurate it will work	0.16
Manufacturalble	Rate which it could be mass produced	0.11
Safety	How safe the heat pipe setup is for the end user	0.13
Ease of Assembly	Able to install the parts	0.14
Variability	Capable of varying with the situation	0.17
Easy to Measure	Measuring of the temperature is easy	0.13

Kaled Heat Pipe 06/28/18

Engineering Requirements:

Table 2: Engineering Requirements

ERs	Description	Targets
Material Melting Temperatures	The materials must be able to withstand the maximum operating temperatures, but for safety, all temperatures will be kept below 200°C.	> 200°C
Reliability	Being able to switch fluids, pressure and wicking materials.	> 5 years
Set-up time		1 min
size	Volume, size of the set up to be useable for lap demo.	12 cubic feet
Light Weight	Must be light weight to utilize it in better way	> 5 Kg

Kaled Heat Pipe 06/28/18

House of Quality (HoQ):

Table 3: HoQ								
Engineering Requirements Customer Requirements	Importance	Material Metling Temperatures	Reliability	Setup Time	Size	Light Weight		
Durability	9	9	3	1	1	1		
Reliability	3	3	9	3	9	3		
Manufacturable	3				3			
Safety	9	3	3	3	9	1		
Easy to Assembly	9	1	1	3		3		
Variability 1			1	3	1	1		
Easy to Measure	3	1	9	9	3	3		
Technical Importance: Raw Score		129	118	102	136	64		
Technical Importance: Relative Weight		23.5%	21.5%	18.6%	24.8%	11.7%		
Techanical Target Value		200	5	1	12	5		
Upper Target Limit								
Lower Target Limit								
Units		С	Years	Min	ft^3	Kg		

Kaled Heat Pipe 06/28/18

Schedule & Budget

Schedule

	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	Jan-19
Task							
Idea selection							
Literature review							
Analysis							
Building Demo							
Design							
Sourcing							
Assembly							
Testing							

Figure 5: Schedule

Ben Gheyam Heat Pipe 06/28/18

Table 4: Budget

Component Name	Model Number	Picture	Cost	Supplier
1. MISOL 10 pcs/lot of copper heat pipe (40cm), for solar water heater	 Fit for the glass tube (500mm length) Insert into the glass tube of Material: Copper Diameter: 14mm (Header) Pipe diameter: 6 mm 		\$ 60	Misol
2. Ammonia	Ammonia gas	Ammonia	\$ 120	Gas company
3. Alkali metals	Cesium, Potassium, Sodium		\$100	Alkali metals company

Ben Gheyam Heat Pipe 06/28/18

Budget Cont...

4. K-type thermocouple	Thermocouple Type-K - Glass Braid Insulated (Bare Wire)	0	\$20X7 = \$140	EDWIN robotics
5. pressure regulator	GOK 2 - 180 L/hr Oil Pressure Regulator c/w Gauge	- A	\$135	Anglo Nordic
6. Wick material	Powder Sintered Copper		\$ 25	Wake-field Vette
7. Heat Sink	Heat sink machined		\$5	Ali Baba
T	otal cost (\$)		\$ 585	

Ben Gheyam Heat Pipe 06/28/18

References

Enertron, "Heat Pipe Products," Enertron, 2017. [Online]. Available: https://www.enertron-inc.com/products/. [Accessed: 28-Jun-2018]

- [1] Enertron, "Heat Pipe Products," *Enertron*, 2017. [Online]. Available: https://www.enertron-inc.com/products/. [Accessed: 28-Jun-2018].
- [2] LinkedIn, Components Of Heat Pipe, 2018. [Online]. Available: https://image.slidesharecdn.com/heatpipe036-130618222411-phpapp01/95/heat-pipe-best-ppt-4-638.jpg?cb=1371595301. [Accessed: 27-Jun-2018].
- [3] MyHeatSinks, "Heat Pipe Solutions | MyHeatSinks," *My Heat Sinks*, 2018. [Online]. Available: https://www.myheatsinks.com/heat-pipe-solutions/. [Accessed: 28-Jun-2018].
- [4] Celsia, "Celsia Blog Archives," Celsia, 2018. [Online].
 Available:https://celsiainc.com/category/celsia-blog/. [Accessed: 28-Jun-2018].
- [5] Celsia, "Heat Pipes and Vapor Chambers What's the Difference?," Celsia, 21-Apr-2018. [Online]. Available: https://celsiainc.com/blog-heat-pipes-and-vapor-chambers-whats-the-difference/. [Accessed: 28-Jun-2018].

Thank you - Any questions?

